Sub-		
<u> </u>	10	
	-21.11	
7		\mathbf{v}

(P	ag	es	:	2

Name

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2013

(CCSS)

Mathematics

MAT 2C 09—TOPOLOGY-I

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the questions Each question carries 4 marks

- 1. Give an example of a Hausdorff topology that is not normal.
- 2. Prove that open balls in a metric space are open sets.
- 3. Define co-finite topology. Is it a Regular topology? Justify your answer.
- Prove that the semi-open interval topology in the set of real numbers is stronger than its usual topology.
- 5. Is the real line with usual topology seperable? Justify your answer.
- Find the derived set of the set Q of rational numbers in the real line with usual topology.
- 7. Prove that a metric space is a T_3 space.
- 8. Define divisible toplogical property. Give an example for the same.
- 9. Define extension problem and lifting problem in topological spaces.
- 10. Is the union of any two connected sets connected? Justify your claim.
- 11. Give an example of a wall in a product of sets.
- 12. Define large box in a topological space. Give an example of a large box.

Part B

Answer either A or B part of each question Each question carries 8 Marks

- 13. A. (a) Determine the topology induced by discrete metric on a set.
 - (b) Define the Sierpinski space. Prove that this topology is not induced by a metric.

- B. (a) Consider two semi-open interval topologies on the set of real numbers. Prove that their meet is the usual topology while their join is the discrete topology on the set of real numbers.
 - (b) Prove that the topological product of a finite collection of second countable topological spaces is second countable.
- 14. A. (a) Prove that metrisability is a hereditary property.
 - (b) Prove that a subset A of a space X is dense in X if and only if for every non-empty open set B of X, $A \cap B \neq \phi$.
 - B. (a) For any set A in a space X, prove that the closure of A is the disjoint union of interior of A with the boundary of A.
 - (b) Prove that the closure of a connected set is connected.
- 15. A. (a) Prove that every closed surjective map is a quotient map.
 - (b) Prove that the composite of two quotient maps is a quotient map.
 - B. (a) Prove that the product of two connected spaces is connected.
 - (b) Prove that every continuous real valued function on a compact space is bounded and attains its bounds.
- 16. A. (a) Prove that a subset of the set of real numbers is connected if and only if it is an interval.
 - (b) In a Hausdorff space, prove that limits of sequences are unique.
 - B. (a) Prove that intersection of a finite. number of large boxes is a large box.
 - (b) Prove that the projection functions are open.

-			
Q	44	60	2

(Pa	iges		2)
-----	------	--	----

Name	 *******

Reg. No.,....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2013

(CCSS)

Mathematics

MAT 2C 06-ALGEBRA - II

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the questions. Each question carries 4 marks.

- 1. Construct a finite field of 8 elements
- 2. Let $a+bi \in C$ for $a+b \in R$ with $b \neq 0$. Show that $C = R(\alpha)$ where $\alpha = a+bi$.
- 3. Find the degree and a basis for $Q(\sqrt[3]{2}, \sqrt{3})$ over Q.
- 4. Find the number of primitive 18th roots of unity in GF (19).
- 5. Define conjugate elements. Show that complex zeros of polynomials with real coefficients occur in conjugate pairs.
- 6. Find all conjugates of the number $\sqrt{1+\sqrt{2}}$ over Q.
- 7. Let E be the splitting field over Q of $x^3 3$ in Q [x]. Find the degree of E over Q.
- 8. Show that if α , $\beta \in \overline{F}$ are both separable over F, then $\alpha \pm \beta$, $\alpha\beta$ and α/β , if $\beta \neq 0$, are all separable over F.
- 9. Describe the group of the polynomial $(x^4-1) \varepsilon Q[x]$ over Q.
- 10. Find over $\phi_8(x)$ over Z_3 .
- 11. Show that the polynomial $x^5 1$ is solvable by radicals over Q.
- 12. Is it true that the Galois group of a finite extension of a finite field is solvable? Justify your answer.

 $(12 \times 4 = 48 \text{ marks})$

Part B

Answer A or B of each question. Each question carries 8 marks.

13. A (i) Let E be an extension field of F, and let $\alpha \in E$, where α is algebraic over F. Show that there is an irreducible polynomial $p(x) \in F[x]$ such that $p(\alpha) = 0$.

- (ii) Show that a field F is algebraically closed iff every non-constant polynomial in x'[x] factors in F[x] into linear factors.
- B (i) Show that if E is a finite extension field of a field F, and K is a finite extension field of E, then K is a finite extension of F, and [K:F]=[K:E][E:F].
 - (ii) Prove that doubling the cube is impossible.
- 14. A (i) Prove that if F is a finite field of characteristic p, a prime, with algebraic closure \overline{F} , then $x^{p^n} x$ has p^n distinct zeros in \overline{F} .
 - (ii) Describe all extensions of the identity map of Q to an iso-morphism mapping of $Q(\sqrt[3]{2})$ onto a subfield of \overline{Q} .
 - B (i) Let F be a finite field of characteristic a prime p. Show that the map $\sigma_p : \mathbb{F} \to \mathbb{F}$ defined by $\sigma_p(a) = a^p$ for $a \in \mathbb{F}$ is an automorphism. Also, prove that $\mathbb{F}_{\{\sigma_p\}} \cong \mathbb{Z}_p$.
 - (ii) Let E be a field, and let F be a subfield of E. Show that the set G (E/F) of all automorphisms of E leaving F fixed forms a subgroup of the group of all automorphisms of E.
- 15. A (i) Define splitting field. Show that if $E \le \overline{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \overline{F} and leaving F fixed is an automorphism of E.
 - (ii) Show that if E is a finite extension of F, the E is separable over F iff each α in E is separable over F.
 - B (i) Show that every field of characteristic zero is perfect.
 - (ii) Prove that if E is an algebraic extension of a prefect field F, then E is perfect.
- 16. A Let K be the splitting field of $(x^4 + 1)$ over Q. Describe the group G (K | Q). Give the lattice diagrams for the subfields of K and for the subgroups of G (K | Q).
 - B Let F be a field of characteristic zero, and let $a \in F$. Show that if K is the splitting field of $x^n a$ over F, then G (K | F) is a solvable group.

 $(4 \times 8 = 32 \text{ marks})$

C	44	60	4
		\mathbf{v}	ı

(Pages: 3)

Name

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2013

(CCSS)

Mathematics

MAT 2C 08—ORDINARY DIFFERENTIAL EQUATIONS

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the questions. Each question carries 4 marks.

- 1. Describe explicitly all inner products on R.
- 2. Apply the Gram-Schmidt process to the vectors $\beta_1 = (1, 0, 1), \ \beta_2 = (1, 0, -1), \ \beta_3 = (0, 3, 4),$ to obtain an orthonormal basis for \mathbb{R}^3 with the standard inner product.
- 3. Show that any solution of the initial value problem y' = f(x, y), $y(x_0) = y_0$, where f(x, y) is an arbitrary function defined and continuous in some neighbourhood of the point (x_0, y_0) , is a continuous solution of the integral equation $y(x) = y_0 + \int_0^x f(t, y(t)) dt$ and vice-versa.
- 4. Find the general solution of y''-x f(x)y'+f(x)y=0.
- 5. Express $\sin^{-1}(x)$ in the form of a power series $\sum a_n x^n$ by solving $y' = (1 x^2)^{-\frac{1}{2}}$ in two ways.
- 6. Locate and classify the singular points on the x axis for the differential equation

$$x^{2}(x^{2}-1)^{2}y''-x(1-x)y'+2y=0$$
.

7. Find the general solution of the differential equation:

$$(x^2-1)y''+(5x+4)y'+4y=0$$
 near the singular point $x=-1$.

8. Obtain the recursion formula for the Legendre polynomials:

$$(n+1) P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x).$$

- 9. Show that $\frac{2p}{x} J_p(x) = J_{p-1}(x) + J_{p+1}(x)$.
- 9. Show that x10. Describe the phase portrait of the system: $\frac{dx}{dt} = +x, \frac{dy}{dt} = 0.$

- 11. Show that a function of the form $ax^3 + bx^2y + cxy^2 + dy^3$ cannot be either positive definite or negative definite.
- 12. Show that (0, 0) is an asymptotically stable critical point of the system:

$$\frac{dx}{dt} = -y - x^3; \frac{dy}{dt} = x - y^3.$$

 $(12 \times 4 = 48 \text{ marks})$

Part B

Answer (a) or (b) of each question. Each question carries 8 marks.

- 13. (a) (i) Let W be a finite-dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Show that E is an idempotent linear transformation of V onto W, W^{\perp} is the null space of E, and $V = W \oplus W^{\perp}$.
 - (ii) Let W be the subspace of R^2 spanned by the vector (3, 4). Using the standard inner product, let E be the orthogonal projection of R^2 onto W. Find a formula for $E(x_1, x_2)$ and W^{\perp} .
 - (b) Solve the following initial value problem by Picard's method:

$$\frac{dy}{dx} = z, \quad y(0) = 1$$

$$\frac{dz}{dx} = -y, \quad z(0) = 0.$$

- 14. (a) Discuss the general solution of the homogeneous equation y'' + py' + qy = 0, where p and q are constants.
 - (b) Find two independent Frobenius series solutions of the equation $x^2y''-x^2y'+(x^2-2)y=0$.
- 15. (a) Derive Rodrigue's formula for Legendre polynomials and show that $P_n(x)$ given by the Rodrigue's formula satisfies the Legendre's equation $(1-x^2)y''-2xy'+n(n+1)y=0$, where n is a non-negative integer.
 - (b) Prove that $\int_{0}^{1} x J_{p}(\lambda_{m}x) J_{p}(\lambda_{n}x) = \begin{cases} 0 & \text{if } m \neq n \\ \frac{1}{2} J_{p+1}(\lambda_{n})^{2} & \text{if } m = n, \end{cases}$ where λ_{n} 's are the positive zeros

of some fixed Bessel function $J_p(x)$ with $p \ge 0$.

- 16. (a) (i) Find the general solution of the system: $\frac{dx}{dt} = 5x + 4y$, $\frac{dy}{dt} = -x + y$.
 - (ii) Find the critical points and the differential equation of the path of the non-linear system:

$$\frac{dx}{dt} = y(x^2 + 1), \ \frac{dy}{dt} = 2xy^2.$$

(b) (i) Determine the nature and stability properties of the critical point (0,0) for the system :

$$\frac{dx}{dt} = 5x + 2y, \ \frac{dy}{dt} = -17x - 5y.$$

(ii) Show that (0, 0) is an unstable critical point for the system:

$$\frac{dx}{dt} = 2xy + x^3, \ \frac{dy}{dt} = -x^2 + y^5.$$

 $(4 \times 8 = 32 \text{ marks})$

~	A	0	77	0	0
\mathbf{C}	4	o	1	O	IJ

(Pages: 3)

Momo	
rvame	 ***********

Reg. No....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2013

(CCSS)

Mathematics

MAT 4E 06-FUNCTIONAL ANALYSIS-II

(2009 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- 1. Let X denote the sequence space l^1 . Let $\| \|'$ be a complete norm on X such that if $\|x_n x\|' \to 0$ then $x_n^{(j)} \to x(j)$ for every j = 1, 2, ... show that $\| \|'$ is equivalent to the usual norm $\| \|_1$ on X.
- 2. Let X be a normed space and A ϵ BL(X). Show that A is invertible iff A is bounded below and surjective.
- 3. Show that every eigen space of a compact operator on a normed space X corresponding to a non-zero eigenvalue of A is infinite dimensional.
- 4. Let \langle , \rangle be an inner product on a linear space X. Show that for all $x, y \in X, |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$, where equality holds iff the set $\{x, y\}$ is linearly dependent.
- 5. Let $\{x_1, x_2,...\}$ be an orthogonal set in an inner product space X and $k_1, k_2,...$ be scalars having absolute value 1. Show that

$$||k_1 x_1 + k_2 x_2 + ... + k_n x_n|| = ||x_1 + x_2 + ... + x_n||.$$

- 6. Let X be an inner product space and $f \in X'$. Let $\{u_1, u_2, ...\}$ be an orthonormal set in X. Show that $\sum_{n} |f(u_n)|^2 \le ||f||^2$.
- 7. Let H be a Hilbert space and A ϵ BL(H). Show that $\|A^*\| = \|A\|$ and $\|A^*A\| = \|A\|^2 = \|AA^*\|$.
- 8. Let $A \; \epsilon \; BL(H)$ be self-adjoint. Show that $A^2 \geq 0 \; \text{ and } \; A \leq \left\|A\right\| \cdot I$.

 $(8 \times 4 = 32 \text{ marks})$

Part B

Answer A or B of each question. Each question carries 12 marks.

- 9. A. (i) Let X be a normed space and A ϵ BL(X) be of finite rank. Show that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
 - (ii) Let X denote the sequence space l^2 . Let $A: X \to X$ be defined by

$$\mathbf{A}(x) = \left(0,\, x(1),\, \frac{x(2)}{2},\, \frac{x(3)}{3}, \cdots\right) \text{ for } x = (x(1),\, x(2), \ldots) \in \mathbf{X} \; . \; \text{Determine } \sigma_e(\mathbf{A}),\, \sigma_a(\mathbf{A}) \text{ and } \sigma(\mathbf{A}) \; .$$

- B. (i) Let $1 \le p < \alpha$ and $\frac{1}{p} + \frac{1}{q} = 1$. For a fixed $y \in l^q$, let $f_y(x) = \sum_{j=1}^{\alpha} x(j) y(j)$, $x \in l^p$. Show that $f_y \in (l^p)'$, $||f_y|| = ||y||_q$ and the map $F: l^q \to (l^p)'$ defined by $F(y) = f_y$; $y \in l^q$ is a linear isometry from l^q onto $(l^p)'$.
 - (ii) Show that if X is a finite dimensional normed space, then its dual X' has the same dimension as X.
- 10. A. (i) Let X and Y be normed spaces and $F: X \to Y$ be linear. Show that F is a compact map iff for every bounded sequence (x_n) in X, $(F(x_n))$ has a subsequence which converges in Y.
 - (ii) Let X and Y be normed spaces and F&BL(X, Y). Define the Transpose of F and show that if F is compact then the Transpose of F is also compact.
 - B. (i) Let X be a linear space, $A: X \to X$ linear and $A(x_n) = k_n x_n$ for some $0 \neq x_n \in X$ and $k_n \in k$ with $k_n \neq k_m$ whenever $n \neq m$; n = 1, 2, Show that $\{x_1, x_2,\}$ is linearly independent subset of X.
 - (ii) Show that every inner product space is a normed space.
- 11. A. (i) State and prove Bessel's inequality.
 - (ii) Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. Show that $\{u_{\alpha}\}$ is an orthonormal basis for H iff span $\{u_{\alpha}\}$ is dense in H.
 - B. (i) Let H be a Hilbert space, G be a subspace of H and $g \in G'$. Show that there is a unique $f \in H'$ such that f/G = g and ||f|| = ||g||.

- (ii) Let H be a Hilbert space and A ϵ BL(H). Show that there is a unique B ϵ BL(H) such that for all $x, y \epsilon$ H, $\langle A(x), y \rangle = \langle x, B(y) \rangle$.
- 12. A. (i) Let H be a Hilbert space and A ϵ BL(H). Show that A is unitary iff ||A(x)|| = ||x|| for all $x \in H$ and A is surjective.
 - (ii) Let A be a self-adjoint operator on a finite dimensional Hilbert space H. Show that every root of the characteristic polynomial of A is real.
 - B. (i) Let $A \in BL(H)$ be compact. Show that A^* is compact.
 - (ii) Let $A \in BL(H)$. Show that A is compact iff A*A is compact.

 $(4 \times 12 = 48 \text{ marks})$

	43	7	a	Λ
\mathbf{c}	40	•	บ	v

(Pages: 2)

••••••••
•••••••

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2013

(CCSS)

Mathematics

MAT 4E 07-ALGEBRAIC TOPOLOGY

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the questions. Each question carries 4 marks.

- 1. Define a geometric complex and give an example.
- 2. Define the p^{th} incidence matrix of an oriented complex K. Compute the 2^{nd} incidence matrix of the closure of a 3-simplex $\sigma^3 = \langle a_0 \ a_1 \ a_2 \ a_3 \rangle$ with vertices ordered by $a_0 \langle a_1 \ a_2 \ a_3 \rangle$.
- 3. Prove that C_p (K), the family of p-chains on an oriented complex K, forms a group with the operation of pointwise addition induced by integers.
- 4. If S is a simple polyhedron with V vertices, E edges and F faces, then prove that V E + F = 2.
- 5. Define a simplicial mapping. Give an example of a simplicial mapping.
- 6. State and prove the Brouwer fixed point theorem.
- 7. Prove that every contractible space is simply connected.
- 8. Prove that the fundamental group of the punctured plane is isomorphic to the group Z of integers under addition.

 $(8 \times 4 = 32 \text{ marks})$

Part B

Answer either A or B of each question. Each question carries 16 marks.

- 9. A (a) Define a geometrically independent set in \mathbb{R}^n . Prove that a set $\{a_0, a_1, \ldots, a_k\}$ of points in \mathbb{R}^n is geometrically independent iff the set of vectors $\{a_1 a_0, a_2 a_0, \ldots, a_k a_0\}$ is linearly independent.
 - (b) Let K be an oriented complex, σ^p an oriented p-simplex of K and σ^{p-2} a(p-2)- face of σ^p . Prove that $\sum \left[\sigma^p, \sigma^{p-1}\right] \left[\sigma^{p-1}, \sigma^{p-2}\right] = 0$, $\sigma^{p-1} \in K$.

- B (a) Prove that, for the projective p, $H_1(p) \cong \mathbb{Z}_2$, the group of integers modulo 2.
 - (b) Let K be a complex with r combinatorial components. Prove that H_0 (K) is isomorphic to the direct sum of r copies of the group Z of integers.
- 10. A (a) Define a regular polyhedron. Prove that there are only five regular simple polyhedra.
 - (b) Prove that an n-pseudomanifold K is orientable if and only if the nth homology group $H_n(K)$ is not the trivial group.
 - B (a) Define a chain mapping between two complexes and show that it induces homomorphism between the homology groups in each dimension.
 - (b) Prove that , if two continuous maps $f, g: s^n \to s^n$ are homotopic, then they have the same degree.
- 11. A (a) Describe how one can associate a group with a topological space using the idea of loops and homotopy.
 - (b) Prove that the set $\pi_1(X, x_0)$ is a group under the 0 operation.
 - B (a) If A is a deformation retract of a space X and x_0 is a point of A, prove that $\pi_1(X, x_0)$ is isomorphic to $\pi_1(A, x_0)$.
 - (b) Prove that two loops α and β in S^1 with basepoint 1 are equivalent if and only if they have the same degree.

 $(3 \times 16 = 48 \text{ marks})$

~	A	0	7	a	4
\mathbb{C}	4	Ö	1	IJ	I.

(Pages: 2)

Name.....

Reg. No....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2013

(CCSS)

Mathematics

MAT 4E 08—GRAPH THEORY

(2009 Admissions)

Time: One Hour and a Half

Maximum: 80 Marks

Part A

Answer all questions.
Each question carries 8 marks.

- 1. Let G be a graph, L(G) be its line graph and let k(G) = k. Is k(L(G)) = k? Justify your answer.
- 2. Let b(v) denote the number of blocks of a simple connected graph G to which a vertex v belongs. Prove that the number of blocks b(G) of G is given by :

$$b(G) = 1 + \sum_{v \in V(G)} (b(v) - 1).$$

- 3. Prove that in a critical graph G, no vertex cut is a clique.
- 4. Prove that the chromatic polynomial of a wheel with n vertices is $\lambda(\lambda-2)^n + (-1)^n \lambda(\lambda-2)$.

 $(4 \times 8 = 32 \text{ marks})$

Part B

Answer A or B of each question. Each question carries 24 marks.

- 5. A. (i) Prove that a graph G with atleast three vertices is 2-connected if and only if any two vertices of G are connected by atleast two internally disjoint paths.
 - (ii) Prove that a connected simple graph G is 3-edge connected if and only if every edge of G is the intersection of the edge sets of two cycles of G.
 - B. (i) Prove that in any network N, the value of any flow f is less than or equal to the capacity of any cut K.
 - (ii) Determine the values of the parameters α , α' , β and β' for the Peterson graph.

- 6. A. (i) Define critical graphs. Prove that a critical graph is connected.
 - (ii) If a connected graph G is neither an odd cycle nor a complete graph, then prove that $\chi(G) \le \Delta(G)$.
 - B. (i) Let G be a loopless bipartite graph. Prove that $\chi'(G) = \chi(G)$.
 - (ii) Let G be a simple graph of order n and size m. Prove that :
 - 1 $f(G; \lambda)$ is a monic polynomial of degree n in λ with integer coefficients and constant term zero.
 - 2 Coefficient of $f(G; \lambda)$ are alternate in sign and the coefficient of λ^{n-1} is -m.

 $(2 \times 24 = 48 \text{ marks})$

6	AA	0	Ω	0
U	44	:O	U	e Ó

(Pa	ges		3)
(203	•	•

Name

Reg. No....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2013

(CCSS)

Mathematics

MAT 2C 07—REAL ANALYSIS—II

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions. Each question carries 4 marks

- I. (1) Let X be a vector space and let $\dim X = n$. Prove that a set E of n vectors in X spans X if and only if E is independent.
 - (2) Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$. Prove that $||A|| < \infty$ and A is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
 - (3) If f and g are differentiable real functions in \mathbb{R}^n , then prove that

$$\Delta(fg) = f\Delta g + g\Delta f.$$

- (4) If A is a countable subset of \mathbb{R} , then prove that $m^*(A) = 0$.
- (5) If E_1 and E_2 are measurable sets, then prove that $E_1 \cup E_2$ is a measurable set.
- (6) Show that if f is a measurable real-valued function and g a continuous function defined on $(-\infty, \infty)$, then $g \circ f$ is measurable.
- (7) Let E be a measurable set of finite measure and let $f = \chi_E$, the characteristic function of E. Prove that f is measurable and evaluate $\int f$.
- (8) Let f and g be bounded measurable functions defined on a set E of finite measure and let f = g a.e.. Prove that $\int f = \int g$.
- (9) Define convergence in measure. Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set E of finite measure such that $f_n \to f$ a.e.. Prove that $\{f_n\}$ converges to f in measure.
- (10) If f'(x) exists, then prove that $D^+(f+g)(x) = f'(x) + D^+g(x)$.
- (11) Show that if f is a real valued function defined on [a, b], f' exists and bounded on [a, b], then f is of bounded variation on [a, b].
- (12) Define absolute continuity and give an example of it. Prove that sum of two absolutely continuous functions is absolutely continuous.

Part B

Answer A or B of each question. Each question carries 8 marks

II. A (a) Prove that a linear operator A on a finite dimensional vector space X is one-to-one if and only if A is onto.

- (b) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then prove that $||AB|| \le ||A|| ||B||$.
- (c) Let f map a convex open subset E of \mathbb{R}^n into \mathbb{R}^m and let f be differentiable in E. If f'(x) = 0 for all $x \in E$, then prove that f is a constant,
- B (a) Let f map an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Prove that f is continuously differentiable in E if and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m$, $1 \le j \le n$.
 - (b) Define contraction mapping. If X is a complete metric space and if φ is a contraction of X into X, then prove that there exists one and only one $x \in X$ such that $\varphi(x) = x$.
- III. A (a) Let $\{E_n\}$ be an infinite decreasing sequence of measurable sets and let $m(E_1)$ is finite. Prove that

$$m\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n).$$

- (b) Prove that the set of all Lebesgue measurable sets is a σ -algebra.
- B (a) Let $\{E_i\}$ be a sequence of disjoint measurable sets and A be any set. Prove that

$$m^*\left(A\cap(\bigcup_{i=1}^\infty E_i)\right)=\sum_{i=1}^\infty m(A\cap E_i).$$

- (b) Prove that Cantor set is of measure zero.
- (c) Let $\{f_n\}$ be a sequence of measurable functions. Prove that $\inf_n f_n$ is a measurable function.
- IV. A (a) Let f be a bounded measurable function and let A and B are disjoint measurable sets of finite measure. Prove that

$$\int_{A\cup B}f=\int_Af+\int_Bg.$$

- (b) Give an example of a sequence of measurable functions where strict inequality occurs in Fatou's lemma.
- (c) Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions and let $f = \lim_{n \to \infty} f_n$ a.e.. Prove that

$$\int f = \lim \int f_n.$$

- B (a) State and prove Lebesgue convergence theorem.
 - (b) Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set E of finite measure. If $\{f_n\}$ converges to f in measure, then prove that there is a subsequence $\{f_{n_k}\}$ that converges almost everywhere to f.

- V. A (a) If f is continuous on [a, b] and one of its derivatives is everywhere non-negative on (a, b), then prove that f is non-decreasing on [a, b].
 - (b) If f is integrable and $\int_a^x f(t) dt = 0$ for all $x \in [a, b]$, then prove that f(t) = 0 a.e. in [a, b].
 - (c) If f is absolutely continuous, then prove that f has derivative almost everywhere.
 - B (a) If f is of bounded variation on [a, b], then prove that f'(x) exists for almost all x in [a, b].
 - (b) Prove that a function F is an indefinite integral if and only if it is absolutely continuous.